Organic Chemistry, Fourth Edition

Janice Gorzynski Smith University of Hawai'i

Chapter 5 Stereochemistry

Prepared by Layne A. Morsch The University of Illinois - Springfield

Copyright © 2014 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Stereochemistry

- Stereochemistry refers to the three-dimensional structure of a molecule.
- As a consequence of stereochemistry, apparently minor differences in 3-D structure can result in vastly different properties.
- We can observe this by considering starch and cellulose, which are both composed of the same repeating unit.

Stereochemistry of Starch and Cellulose

- In cellulose, the O atom joins two rings using equatorial bonds.
- In starch, the O atom joins two rings using one equatorial and one axial bond.
- Due to these differences in stereochemistry, humans can metabolize starch for energy but we cannot digest cellulose.

3-D Structure of Starch and Cellulose

Constitutional Isomers

- Isomers are different compounds with the same molecular formula.
- The two major classes of isomers are constitutional isomers and stereoisomers.
 - Constitutional/structural isomers have:
 - different IUPAC names
 - same or different functional groups
 - · different physical properties
 - · different chemical properties

Stereoisomers

5

6

Stereoisomers:

- Differ only in the way the atoms are oriented in space.
- Have identical IUPAC names (except for a prefix like *cis* or *trans*).
- Always have the same functional group(s).
- Differ in configuration (three-dimensional arrangement).

Constitutional and Stereoisomers

Nonsuperimposable Mirror Images

- · Although everything has a mirror image, mirror images may or may not be superimposable.
 - · To superimpose means to align all parts of two objects
- · Some molecules are like hands. Left and right hands are mirror images, but they are not identical, or superimposable.
- · A molecule (or object) that is not superimposable on its mirror image is said to be chiral.

right hand mirror

nonsuperimposable

8

Superimposable (Achiral) Objects

- Other molecules are like socks.
 - Two socks from a pair are mirror images that are superimposable.
 - A sock and its mirror image are identical.
- A molecule or object that is superimposable on its mirror image is said to be achiral.

9

10

Achiral Molecules

• We can now consider several molecules to determine whether or not they are chiral.

Chiral Molecules

- The molecule labeled A and its mirror image labeled B are not superimposable.
 - No matter how you rotate A and B, all the atoms never align.
 - Thus, CHBrCIF is a chiral molecule, and A and B are different compounds.
- A and B are stereoisomers—specifically, they are enantiomers.
- A carbon atom with four different groups is a tetrahedral stereogenic center.
 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Stereogenic Centers

- In general, a molecule with no stereogenic centers will not be chiral (exceptions to this will be considered in section 17.5).
- With one stereogenic center, a molecule will always be chiral.
- With two or more stereogenic centers, a molecule may or may not be chiral.

Planes of Symmetry

- A plane of symmetry is a mirror plane that cuts the molecule in half, so that one half of the molecule is a reflection of the other half.
- Achiral molecules usually contain a plane of symmetry but chiral molecules do not.

Summary of Chirality

- Everything has a mirror image.
- The fundamental question is whether a molecule and its mirror image are superimposable.
 - If not, they are chiral and do not contain a plane of symmetry.
 - If they are superimposable, they are achiral and will contain a plane of symmetry.
- The terms stereogenic center and chiral molecule are related but distinct.
- A chiral molecule must have one or more stereogenic centers.

Stereogenic Centers

- To locate a stereogenic center, examine each tetrahedral carbon atom in a molecule, and look at the four groupsnot the four atoms-bonded to it.
- Always omit from consideration all C atoms that cannot be tetrahedral stereogenic centers. These include:
 - **CH₂ and CH₃ groups** •
 - Any sp or sp² hybridized C

Multiple Stereogenic Centers

 Larger organic molecules can have two, three, or even hundreds of stereogenic centers.

Copyright C The McGraw-Hill Companies, Inc. Permission required for reproduction or display. CH2OH $\dot{C}=O$ CH₂N(CH₃); HO - C - HH-C*-OH ephedrine C^{*}-OH (bronchodilator, decongestant) CH₂OH propoxyphene Trade name: Darvon fructose (analgesic) [* = stereogenic center] (a simple sugar)

Enantiomers

- Enantiomers are non-superimposable mirror image molecules.
- Any molecule with one stereogenic center exists as a pair of enantiomers.

Drawing Enantiomers

- To draw both enantiomers of a chiral compound such as 2-butanol, use the typical convention for depicting a tetrahedron.
 - To form the first enantiomer, arbitrarily place the four groups—H, OH, CH₃ and CH₂CH₃—on any bond to the stereogenic center.
 - Copyright © the McGraw-Hill Companies Inc. Permission required for reproduction or display. Draw the molecule...then the mirror image. H_3 H_3 H_3
 - Then draw the mirror image.

Stereogenic Centers in Cyclic Compounds

- Stereogenic centers may also occur at carbon atoms that are part of a ring.
- To find stereogenic centers on ring carbons, always draw the rings as flat polygons, and look for tetrahedral carbons that are bonded to four different groups.

Stereogenic Centers

 In 3-methylcyclohexene, the CH₃ and H substituents that are above and below the plane of the ring are drawn with wedges and dashes as usual.

Some Biologically Active Molecules with Stereogenic Centers on Rings

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two enantiomers of thalidomide stereogenic center $H \rightarrow 0$ $H \rightarrow 0$

21

Some Biologically Active Molecules with Stereogenic Centers on Rings

Labeling Stereogenic Centers with R or S

- Since enantiomers are two different compounds, they need to be distinguished by name.
 - This is done by adding the prefix *R* or *S* to the IUPAC name of the enantiomer.
 - A counterclockwise direction is an S (Latin for *sinister*, left) configuration. A clockwise direction is an R (Latin for *rectus*, right) configuration
- RULE 1: To designate enantiomers as *R* or *S*, priorities must be assigned to each group bonded to the stereogenic center, in order of decreasing atomic number.
- The atom of highest atomic number gets the highest priority (1).

23

Assigning Priority for R and S

- RULE 2: If two atoms on a stereogenic center are the same, assign priority based on the atomic number of the atoms bonded to these atoms.
- One atom of higher atomic number determines the higher priority.

Assigning Priority for *R* and S-Isotopes

- RULE 3: If two isotopes are bonded to the stereogenic center, assign priorities in order of decreasing mass number.
- Thus, in comparing the three isotopes of hydrogen, the order of priorities is:

Copyright © the McGraw-Hill Companies Inc. Permission required for reproduction or display.							
	Mass number	Priority					
T (tritium)	3 (1 proton + 2 neutrons)	1					
D (deuterium)	2 (1 proton + 1 neutron)	2					
H (hydrogen)	1 (1 proton)	3					

25

Assigning Priority for R and S-Multiple Bonds

- RULE 4: To assign a priority to an atom that is part of a multiple bond, treat a multiply bonded atom as an equivalent number of singly bonded atoms.
- For example, the C of a C=O is considered to be bonded to two O atoms.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. bonded to a stereogenic center here

Assigning Priority for R and S-Multiple Bonds

Other common multiple bonds are drawn below:

27

Assigning Priorities to Stereogenic Centers

How To Assign R or S

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

HOW TO Assign R or S to a Stereogenic Center

Example Label each enantiomer as R or S.

HOW TO, continued

• The priorities for the four groups around the stereogenic center in 2-butanol were given in Rule 2, on page 171.

29

How To Assign R or S

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Step [2] Orient the molecule with the lowest priority group (4) back (on a dash), and visualize the relative positions of the remaining three groups (priorities 1, 2, and 3).
 - For each enantiomer of 2-butanol, look toward the lowest priority group, drawn behind the plane, down the C H bond.

How To Assign R or S

- If tracing the circle goes in the clockwise direction-to the right from the noon position-the isomer is named R.
- If tracing the circle goes in the counterclockwise direction to the left from the noon position the isomer is named
 S.

• The letters R or S precede the IUPAC name of the molecule. For the enantiomers of 2-butanol:

Orienting the Lowest Priority Group in Back

• If the lowest priority group is not facing towards back, rotate the molecule 120° around a stationary bond axis.

Figure 5.7

Diastereomers

- For a molecule with *n* stereogenic centers, the maximum number of stereoisomers is 2^n .
- When *n*=2, 2² = 4.
 - With two stereogenic centers there are 4 stereoisomers that can be drawn, although some of them may be the same molecule.
 - Some of the stereoisomers will not be mirror images of each other.
 - · Diastereomers are non-mirror image stereoisomers.

33

Finding All Possible Stereocenters

Example 1: stereoisomers of 2,3-dibromopentane

• Let us consider the stepwise procedure for finding all the possible.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

HOW TO Find and Draw All Possible Stereoisomers for a Compound with Two Stereogenic Centers

Step [1] Draw one stereoisomer by arbitrarily arranging substituents around the stereogenic centers. Then draw its mirror image.

Finding All Possible Stereocenters

• After drawing the compound and the mirror image, place B directly on top of A; and rotate B 180° and place it on top of A to see if the atoms align.

- In this case, the atoms of A and B do not align, making A and B nonsuperimposable mirror images—i.e., enantiomers.
- A and B are two of the four possible stereoisomers of 2,3dibromopentane.

35

Finding All Possible Stereocenters

- Switching the positions of H and Br (or any two groups) on one stereogenic center of either A or B forms a new stereoisomer (labeled C in this example), which is different from A and B.
- The mirror image of C is labeled D.

Summary of Stereoisomers of 2,3-dibromopentane

- A and B are enantiomers. C and D are enantiomers.
- A and C are diastereomers. A and D are diastereomers. B and C are diastereomers. B and D are diastereomers.

Example 2: stereoisomers of 2,3-dibromobutane

• Since this molecule has two stereogenic centers, the maximum number of stereoisomers is 4.

[* = stereogenic center]

Stereoisomers of 2,3-dibromobutane

• To find all the stereoisomers of 2,3-dibromobutane, arbitrarily form one stereoisomer A, and then draw its mirror image, B.

Stereoisomers of 2,3-dibromobutane

- To find the other two stereoisomers if they exist, switch the position of two groups on one stereogenic center of one enantiomer only.
- Switching the positions of H and Br on one stereogenic center of A forms C, which is different from both A and B.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Meso Compounds

- Compound C contains a plane of symmetry, and is achiral.
- A meso compound is an achiral compound that contains tetrahedral stereogenic centers. C is a meso compound.
- Meso compounds generally contain a plane of symmetry so that they possess two identical halves.

 Because one stereoisomer of 2,3-dibromobutane is superimposable on its mirror image, there are only three stereoisomers, not four.

Stereoisomers of 2,3-dibromobutane

Figure 5.9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pair of enantiomers: A and B Pairs of diastereomers: A and C; B and C

R and S Assignments in Compounds with Two or More Stereogenic Centers

• When a compound has more than one stereogenic center, *R* and *S* configurations must be assigned to each of them.

- Identical compounds have the same R,S designations at every tetrahedral stereogenic center.
- Enantiomers have exactly opposite R,S designations.
- Diastereomers have the same R,S designation for at least one stereogenic center and the opposite for at least one of the other stereogenic centers.

Example 3: 1,3-Dibromocyclopentane Stereoisomers

 Since it has two stereogenic centers, it has a maximum of four stereoisomers.

1,5-dibiomocyclopentane

- [* = stereogenic center]
- Disubstituted cycloalkanes can have two substituents on the same side of the ring (*cis* isomer, A) or on opposite sides of the ring (*trans* isomer, B).
- These compounds are stereoisomers but not mirror images.

Cis-1,3-Dibromocyclopentane Structures

· To find the other two stereoisomers if they exist, draw the mirror images of each compound and determine whether the compound and its mirror image are superimposable.

- The cis isomer is superimposable on its mirror image, making the images identical.
- · A is an achiral meso compound.

Trans-1,3-Dibromocyclopentane Structures

- The trans isomer is not superimposable on its mirror image, labeled C, making B and C different compounds.
- B and C are enantiomers.

· Because one stereoisomer of 1,3-dibromocyclopentane is superimposable on its mirror image, there are only three stereoisomers, not four. 46

Summary–Types of Isomers

Figure 5.10

47

Determining the Relationship Between Molecules

Figure 5.11

Optical Activity

- The chemical and physical properties of two enantiomers are identical except in their interaction with chiral substances.
- They have identical physical properties, except for how they interact with plane-polarized light.
- Plane-polarized (polarized) light is light that has an electric vector that oscillates in a single plane.
- Plane-polarized light arises from passing ordinary light through a polarizer.
- A polarimeter is an instrument that allows polarized light to travel through a sample tube containing an organic compound and permits the measurement of the degree to which an organic compound rotates plane-polarized light.

Plane-Polarized Light

- With achiral compounds, the light that exits the sample tube remains unchanged.
- A compound that does not change the plane of polarized light is said to be optically inactive.

50

Rotation of Plane-Polarized Light

- With chiral compounds, the plane of the polarized light is rotated through an angle α .
- The angle α is measured in degrees (°), and is called the observed rotation.
- A compound that rotates polarized light is said to be optically active.

Optical Activity Summary

- The rotation of polarized light can be clockwise or counterclockwise.
- If the rotation is clockwise, the compound is called dextrorotatory. The rotation is labeled d or (+).
- If the rotation is counterclockwise, the compound is called levorotatory. The rotation is labeled / or (-).
- Two enantiomers rotate plane-polarized light to an equal extent but in opposite directions.
 - (e.g., if enantiomer A rotates polarized light +5°, the same concentration of enantiomer B rotates it -5°)
- No relationship exists between *R* and *S* prefixes and the (+) and (-) designations that indicate optical rotation.

Racemic Mixtures

- An equal amount of two enantiomers is called a racemic mixture or a racemate.
- A racemic mixture is optically inactive.
- Because two enantiomers rotate plane-polarized light to an equal extent but in opposite directions, the rotations cancel, and no rotation is observed.

53

Racemic Mixtures

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Table 5.1 The Ph	ysical Properties of Enantiomers	A and B Compared	
Property	A alone	B alone	Racemic A + B
Melting point	identical to B	identical to A	may be different from A and B
Boiling point	identical to B	identical to A	may be different from A and B
Optical rotation	equal in magnitude but opposite in sign to B	equal in magnitude but opposite in sign to A	0°

Specific Rotation

- Specific rotation is a standardized physical constant for the amount that a chiral compound rotates plane-polarized light.
- Specific rotation is denoted by the symbol [α] and defined using a specific sample tube length (*I*, in dm), concentration (*c* in g/mL), temperature (25°C) and wavelength (589 nm).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Optical Purity

- Enantiomeric excess (optical purity) is a measurement of how much one enantiomer is present in excess of the racemic mixture.
- It is denoted by the symbol ee.

ee = % of one enantiomer - % of the other enantiomer

- Consider the following example—If a mixture contains 75% of one enantiomer and 25% of the other, the enantiomeric excess is 75% 25% = 50%.
- Thus, there is a 50% excess of one enantiomer over the racemic mixture or 50% *ee.*

The enantiomeric excess can also be calculated if the specific rotation [α] of a mixture and the specific rotation [α] of a pure enantiomer are known.

 $ee = ([\alpha] mixture/[\alpha] pure enantiomer) x 100\%$

57

Physical Properties of Stereoisomers

- Since enantiomers have identical physical properties, they cannot be separated by common physical techniques like distillation.
- Diastereomers and constitutional isomers have different physical properties, and therefore can be separated by common techniques.

Figure 5.12

ноос	соон	ноос		н	ноос	соон
HO HO	С Н Н	HO'''C-	-C. H		HONY HONY	С. М
A 1	enantiomer	s	в t	diastereo	omers	
Ĺ		diaster	eomers		î	
Prope	rty	Α	в	С	A + B (1:1)
melting	g point (°C)	171	171	146	206	
solubil	ity (g/100 mL H ₂ C) 139	139	125	139	
[α]		+13	-13	0	0	
R,S de	signation	R,R	S,S	R,S	-	
d,1 des	signation	d	1	none	d,1	

• The physical properties of A and B differ from their diastereomer C.

 The physical properties of a racemic mixture of A and B (last column) can also differ from either enantiomer and diastereomer C.

• **C** is an achiral meso compound, so it is optically inactive; $[\alpha] = 0$.

Chemical Properties of Enantiomers

- Two enantiomers have exactly the same chemical properties except for their reaction with chiral, non-racemic reagents.
- Many drugs are chiral and often must react with a chiral receptor or chiral enzyme to be effective.
- (S)-ibuprofen is the active component agents in Motrin and Advil.
- (R)-fluoxetine is the active component in Prozac.

59

Chemical Properties of Enantiomers

- One enantiomer of a drug may effectively treat a disease whereas its mirror image may be ineffective or toxic.
- Changing the orientation of the substituents on naproxen converts it from a common anti-inflammatory agent into a harmful liver toxin.

Enantiomers and the Sense of Smell

- Research suggests that the odor of a particular molecule is determined more by its shape than by the presence of a particular functional group.
- Because enantiomers interact with chiral smell receptors, some enantiomers have different odors.

61

Molecular Shape and the Sense of Smell

Cyclooctane and other molecules similar in shape bind to a particular olfactory receptor on the nerve cells that lie at the top of the nasal passage. Binding results in a nerve impulse that travels to the brain, which interprets impulses from particular receptors as specific odors.

(caraway): © The McGraw-Hill Companies, Inc./Elite Images; (spearmint): © David Sieren/Visuals Unlimited